

SAFETY MANUAL

SIL 3 Switch/Proximity Detector Repeater Relay Output, Termination Board Models D5032S, D5032D

Reference must be made to the relevant sections within the instruction manual ISM0108, which contain basic guides for the installation of the equipment.

Functional Safety Manual and Application

Application for D5032D (used as double channel, with independent channels)

OFF operation

Channel 1

D5032D
(Ch. 1 and Ch.2)

Channel 2

Out 1 relay is de-energized, out contact is open

ON operation

Description:

For this application, enable input line fault (open or short) detection and direct input to output transfer function, by set the internal dip-switches in the following mode (see pages 7 and 8 for more information):

Dip-switch position	1	2	3	4	5	6	7	8
ON/OFF state	ON	OFF	ON	OFF	ON	OFF	OFF	OFF

The module is powered by Termination Board (TB) connector to 24 Vdc power supply. The green LED is lit in presence of supply power.
Input signals from field are applied to Pins 7-8 (In $1-\mathrm{Ch} .1$) and Pins 9-10 (In $2-\mathrm{Ch} .2$).
Relay contact outputs (Out 1 and Out 2) on TB connector are both normally open (or relay de-energized as safe state condition) for OFF operation, while they are both closed (or relay energized) for ON operation.
The following table describes for each channel the state (open or closed) of its output when its input signal is in OFF or ON state, and it gives information about turn-on or turn-off of the related channel status LED and channel fault LED:

Input signal state Pins 7-8 (In 1-Ch.1) or 9-10 (In 2-Ch.2)	Output relay contact state Out 1 or Out 2 on TB connector	Channel status yellow LED state	Channel fault red LED state
Proximity sensor is OFF or switch is open	Open (De-energize relay)	OFF	OFF
Proximity sensor is ON or switch is closed	Closed (Energized relay)	ON	
Independently from proximity sensor or switch state, the input line is break	Open (De-energized relay as safe state condition)	OFF	OFF
Independently from proximity sensor or switch state, the input line is in short circuit	Open (De-energized relay as safe state condition)	OFF	ON

Safety Function and Failure behavior:

D5032D is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) =0.
The failure behaviour is described from the following definitions :
\square fail-Safe State: it is defined as the relay output is de-energized (NO contact is open);
\square fail Safe: failure mode that causes the module to go to the defined fail-safe state without a demand from the process;
\square fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state), so that the relay output remains energized (NO contact is blocked in closed position);
\square fail "No Effect": failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure or a dangerous failure.
When calculating the SFF this failure mode is not taken into account;
\square fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness.
When calculating the SFF this failure mode is not taken into account. It is also not considered for the total failure rate (safety function) evaluation.
The 2 channels of D5032D module could be used to increase the hardware fault tolerance, needed for a higher SIL of a certain Safety Function, as they are completely independent each other, not containing common components. In fact, the analysis results got for D5032S (single channel) are also valid for each channel of D5032D (double channel).
Failure rate date: taken from Siemens Standard SN29500.

Failure rate table:

Failure category	Failure rates (FIT) 100 mA maximum relay contact current
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	0.00
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	11.22
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{s u}=$ Total Safe Undetected failures	101.62
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function) $=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	112.84
MTBF (safety function, one channel) $=\left(1 / \lambda_{\text {tot safe }}\right)+$ MTTR (8 hours)	1011 years
$\lambda_{\text {no effect }}=$ "No Effect" failures	202.96
$\lambda_{\text {not part }}=$ "Not Part" failures	6.20
$\lambda_{\text {tot device }}=$ Total Failure Rate (Device) $=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	322.00
MTBF (device, one channel) $=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR (8 hours)	354 years

Failure rates table according to IEC 61508:2010 Ed. 2 :

Relay contact current	$\lambda_{\text {sd }}$	$\lambda_{\text {su }}$	$\lambda_{\text {dd }}$	$\lambda_{\text {du }}$	SFF
100 mA maximum	0.00 FIT	101.62 FIT	0.00 FIT	11.22 FIT	90.06%

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:

Relay contact current 100 mA max	T[Proof $\mathbf{~ = ~ 1 ~ y e a r ~}$	T[Proof $]=\mathbf{2}$ years	T[Proof] $\mathbf{= 2 0}$ years
	PFDavg $=4.92 \mathrm{E}-05$ Valid for SIL $\mathbf{3}$	PFDavg $=9.84 \mathrm{E}-05$ Valid for SIL $\mathbf{3}$	PFDavg $=9.84 \mathrm{E}-04$ Valid for SIL 2

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

Relay contact current 100 mA max	T[Proof] = $\mathbf{1 0}$ years
	PFDavg $=4.92$ E-04 Valid for SIL 3

Systematic capability SIL 3.

Functional Safety Manual and Application

Application for D5032D (used as duplicator)

Description:

To enable input line fault (open or short) detection on In 1, direct input to output transfer and Out 1 Duplicator functionality (with Parallel mode) on channel 2,
set the internal dip-switches in the following mode (see pages 7 and 9 for more information):

Dip-switch position	1	2	3	4	5	6	7	8
ON/OFF state	ON	OFF	OFF	OFF	ON	ON	OFF	ON

The module is powered by Termination Board (TB) connector to 24 Vdc power supply. The green LED is lit in presence of supply power.
Input signal from field is only applied to Pins 7-8 (In 1-Ch.1). Pins 9-10 must be shorted to set the module as duplicator.
Relay contact Out 1 and Out 2 on TB connector are normally open (or de-energized relays as safe state condition) for OFF operation, while they are closed (or energized relays) for ON operation.
The following table describes for Ch. 1 and Ch. 2 the output state (open or closed) when Ch. 1 input signal is in OFF or ON state, and it gives information about turn-on or turn-off of channel status LED and channel fault LED:

Input 1 signal state Pins 7-8 (In 1-Ch.1)	Out 1 relay contact state on TB connector	Out 2 relay contact state on TB conn. (Out 1 Duplicator)	Ch.1 or Ch.2 status yellow LED state	Ch. 1 or Ch.2 fault red LED state
Proximity is OFF or switch is open	Open (De-energize relay)	Open (De-energize relay)	OFF	OFF
Proximity is ON or switch is closed	Closed (Energized relay)	Closed (Energized relay)	ON	OFF
If the input line is break	Open (safe state condition)	Open (safe state condition)	OFF	ON
If the input line is in short circuit	Open (safe state condition)	Open (safe state condition)	OFF	ON

Safety Function and Failure behavior:

D5032D is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) $=0$.
The failure behaviour is described from the following definitions :
\square fail-Safe State: it is defined as the relay output is de-energized (NO contact is open);
\square fail Safe: failure mode that causes the module to go to the defined fail-safe state without a demand from the process;
\square fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state), so that the relay output remains energized (NO contact is blocked in closed position);
\square fail "No Effect": failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure or a dangerous failure. When calculating the SFF this failure mode is not taken into account;
\square fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. When calculating the SFF this failure mode is not taken into account. It is also not considered for the total failure rate (safety function) evaluation.
Both channels Ch .1 and Ch .2 (as Ch. 1 duplicator) are functional safety related.
Failure rate date: taken from Siemens Standard SN29500.
Failure rate table:

Failure category	Failure rates (FIT) 100 mA maximum relay contact current
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	0.00
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	11.30
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{\text {su }}=$ Total Safe Undetected failures	153.95
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function) $=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	165.25
MTBF (safety function, for each channel) $=\left(1 / \lambda_{\text {tot safe }}\right)+$ MTTR (8 hours)	690 years
$\lambda_{\text {no effect }}=$ "No Effect" failures	398.15
$\lambda_{\text {not part }}=$ "Not Part" failures	66.00
$\lambda_{\text {tot device }}=$ Total Failure Rate (Device) $=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	629.40
MTBF (device) $=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR (8 hours)	181 years

Failure rates table according to IEC 61508:2010 Ed. 2 :

Relay contact current	$\lambda_{\text {sd }}$	$\lambda_{\text {su }}$	$\lambda_{\text {dd }}$	$\lambda_{\text {du }}$	SFF
100 mA maximum	0.00 FIT	153.95 FIT	0.00 FIT	11.30 FIT	93.16%

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:

Relay contact	T[Proof] = 1 year	T[Proof] $=2$ years	T[Proof] = 20 years
	PFDavg $=4.96$ E-05 Valid for SIL 3	PFDavg $=9.92 \mathrm{E}-05$ Valid for SIL 3	PFDavg $=9.92 \mathrm{E}-04$ Valid for SIL 2

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

Relay contact	T[Proof] $\mathbf{= 1 0}$ years
current	PFDavg $=4.96$ E-04 Valid for SIL $\mathbf{3} \mathbf{~ m A ~} \max$

Systematic capability SIL 3.

Functional Safety Manual and Application Application for D5032D (used as fault indicator)

Description:

To enable input line fault (open or short) detection on In 1, direct input to output transfer and Out 1 Fault indicator functionality (with NE mode) on channel 2,
set the internal dip-switches in the following mode (see pages 7 and 9 for more information):

Dip-switch position	1	2	3	4	5	6	7	8
ON/OFF state	ON	OFF	OFF	OFF	ON	OFF	ON	OFF

The module is powered by Termination Board (TB) connector to 24 Vdc power supply. The green LED is lit in presence of supply power.
Input signal from field is only applied to Pins 7-8 (ln 1-Ch.1). Pins 9-10 must be shorted to set the module as fault indicator.
Relay contact Out 1 on TB connector is normally open (or de-energized relays as safe state condition) for OFF operation, while they are closed (or energized relays) for ON operation. Relay contact Out 2 on TB connector is related to Ch. 1 Fault condition: without fault Out 2 is closed (or energized relay); in case of fault Out 2 is open (or de-energized relay as safe state condition). The following table describes for Ch. 1 and Ch. 2 the output state (open or closed) when Ch. 1 input signal is in OFF or ON state, and it gives information about turn-on or turn-off of channel status LED and channel fault LED:

Input 1 signal state Pins 7-8 (In 1-Ch.1)	Out 1 relay contact state on TB connector	Out 2 relay contact state on TB conn. (Out 1 Fault indicator)	Ch.1 status yellow LED state	Ch.1 fault red LED state	Ch.2 status yellow LED state
Proximity is OFF or switch is open	Open (De-energize relay)	Closed (Energized relay)	OFF	OFF	ON
Proximity is ON or switch is closed	Closed (Energized relay)	Closed (Energized relay)	ON	OFF	ON
If the input line is break	Open (safe state condition)	Open (safe state condition)	OFF	ON	OFF
If the input line is in short circuit	Open (safe state condition)	Open (safe state condition)	OFF	ON	OFF

Safety Function and Failure behavior:

D5032D is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) $=0$.
The failure behaviour is described from the following definitions :
\square fail-Safe State: it is defined as the relay output is de-energized (NO contact is open);
\square fail Safe: failure mode that causes the module to go to the defined fail-safe state without a demand from the process;
\square fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state), so that the relay output remains energized (NO contact is blocked in closed position);
\square fail "No Effect": failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure or a dangerous failure.
When calculating the SFF this failure mode is not taken into account;
\square fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness.
When calculating the SFF this failure mode is not taken into account. It is also not considered for the total failure rate (safety function) evaluation.
Both channels Ch. 1 and Ch. 2 (as Ch. 1 fault indicator) are functional safety related.
Failure rate date: taken from Siemens Standard SN29500.
Failure rate table (Out 1):

Failure category	Failure rates (FIT) Out 1: 100 mA maximum relay contact current
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	0.00
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	11.30
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{s u}=$ Total Safe Undetected failures	153.95
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function) $=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	165.25
MTBF (safety function, for $\ln 1+0$ ut1) $=\left(1 / \lambda_{\text {tot safe }}\right)+$ MTTR (8 hours)	690 years
$\lambda_{\text {no effect }}=$ "No Effect" failures	398.15
$\lambda_{\text {not part }}=$ "Not Part" failures	66.00
$\lambda_{\text {tot device }}=$ Total Failure Rate (Device) $=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	629.40
MTBF (device) $=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR (8 hours)	181 years

Failure rates table (Out 1) according to IEC 61508:2010 Ed. 2 :

Out 1	Relay contact current	$\lambda_{\text {sd }}$	$\boldsymbol{\lambda}_{\text {su }}$	$\boldsymbol{\lambda}_{\text {dd }}$	$\boldsymbol{\lambda}_{\text {du }}$	SFF
	100 mA maximum	0.00 FIT	153.95 FIT	0.00 FIT	11.30 FIT	93.16%

PFDavg vs T[Proof] table (Out 1) (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:

Out 1: Relay	T[Proof $]=1$ year	T[Proof $]=\mathbf{2}$ years	T[Proof] $=\mathbf{2 0}$ years
contact current 100 mA max	PFDavg $=4.96 \mathrm{E}-05$ Valid for SIL $\mathbf{3}$	PFDavg $=9.92 \mathrm{E}-05$ Valid for SIL $\mathbf{3}$	PFDavg $=9.92$ E-04 Valid for SIL $\mathbf{2}$

PFDavg vs T[Proof] table (Out 1) (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

| Out 1: Relay |
| :---: | :---: |
| contact current |
| 100 mA max |\quad T[Proof] =10 years

Systematic capability SIL 3 Out 1.

Functional Safety Manual and Application

Application for D5032D (used as fault indicator)

Failure rate table (Out 2):

Failure category	Failure rates (FIT) Out 2: 100 mA maximum relay contact current
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	0.00
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	10.62
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{\text {su }}=$ Total Safe Undetected failures	153.41
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function) $=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	164.03
MTBF (safety function, for In1 + Out2) $=$ ($1 / \lambda_{\text {tot safe }}$) + MTTR (8 hours)	696 years
$\lambda_{\text {no effect }}=$ "No Effect" failures	399.38
$\lambda_{\text {not part }}=$ "Not Part" failures	66.00
$\lambda_{\text {tot device }}=$ Total Failure Rate (Device) $=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	629.41
MTBF (device) $=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR (8 hours)	181 years

Failure rates table (Out 2) according to IEC 61508:2010 Ed. 2 :

Out 2	Relay contact current	$\lambda_{\text {sd }}$	$\lambda_{\text {su }}$	$\lambda_{\text {dd }}$	$\lambda_{\text {du }}$	SFF
	100 mA maximum	0.00 FIT	153.41 FIT	0.00 FIT	10.62 FIT	93.53%

PFDavg vs T[Proof] table (Out 2) (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:

Out 2: Relay	T[Proof] = 1 year	T[Proof] = 2 years	T[Proof] = 20 years
contact current	PFDavg = 4.66 E-05	PFDavg $=9.32$ E-05	PFDavg $=9.32 \mathrm{E}-04$
100 mA max	Valid for SIL 3	Valid for SIL $\mathbf{3}$	Valid for SIL 2

PFDavg vs T[Proof] table (Out 2) (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

Out 2: Relay contact current 100 mA max	T[Proof $]=\mathbf{1 0}$ years
	PFDavg $=4.66$ E-04 Valid for SIL $\mathbf{3}$

Systematic capability SIL 3 for Out 2.

Functional Safety Manual and Application

Application for D5032S

Description:

For this application, enable input line fault (open or short) detection and direct input to output transfer function, by set the internal dip-switches in the following mode (see page 10 for more information):

Dip-switch position	1	2	3	4	5	6	7	8
ON/OFF state	ON	OFF	Not used	Not used	ON	Not used	OFF	OFF

The module is powered by Termination Board (TB) connector to 24 Vdc power supply. The green LED is lit in presence of supply power.
Input signal from field is applied to Pins 7-8 (In 1-Ch.1).
Relay contact Out 1 on TB connector is normally open (or relay de-energized as safe state condition) for OFF operation, while it is closed (or relay energized) for ON operation. The following table describes for Channel 1 the state (open or closed) of its output when its input signal is in OFF or ON state, and it gives information about turn-on or turn-off of its channel status LED and channel fault LED:

Input 1 signal state Pins 7-8 (In 1-Ch.1)	Out 1 relay contact state on TB connector	Channel 1 status yellow LED state	Channel 1 fault red LED state
Proximity is OFF or switch is open	Open (De-energize relay)	OFF	OFF
Proximity is ON or switch is closed	Closed (Energized relay)	ON	OFF
If the input line is break	Open (safe state condition)	OFF	ON
If the input line is in short circuit	Open (safe state condition)	OFF	ON

Safety Function and Failure behavior:

D5032S is considered to be operating in Low Demand mode, as a Type A module, having Hardware Fault Tolerance (HFT) $=0$.
The failure behaviour is described from the following definitions :
\square fail-Safe State: it is defined as the relay output is de-energized (NO contact is open);
\square fail Safe: failure mode that causes the module to go to the defined fail-safe state without a demand from the process;
\square fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state), so that the relay output remains energized (NO contact is blocked in closed position);
\square fail "No Effect": failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure or a dangerous failure.
When calculating the SFF this failure mode is not taken into account;

- fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness.

When calculating the SFF this failure mode is not taken into account. It is also not considered for the total failure rate (safety function) evaluation.
Failure rate date: taken from Siemens Standard SN29500.
Failure rate table:

Failure category	Failure rates (FIT) 100 mA maximum relay contact current
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	0.00
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	11.22
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{\text {su }}=$ Total Safe Undetected failures	101.62
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function) $=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	112.84
MTBF (safety function, channel 1) $=\left(1 / \lambda_{\text {tot safe }}\right)+$ MTTR (8 hours)	1011 years
$\lambda_{\text {no effect }}=$ "No Effect" failures	202.96
$\lambda_{\text {not part }}=$ "Not Part" failures	6.20
$\lambda_{\text {tot device }}=$ Total Failure Rate (Device) $=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	322.00
MTBF (device, channel 1) $=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR (8 hours)	354 years

Failure rates table according to IEC 61508:2010 Ed. 2 :

Relay contact current	$\lambda_{\text {sd }}$	$\lambda_{\text {su }}$	$\lambda_{\text {dd }}$	$\lambda_{\text {du }}$	SFF
100 mA maximum	0.00 FIT	101.62 FIT	0.00 FIT	11.22 FIT	90.06%

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:

Relay contact	T[Proof] = 1 year	T[Proof] = 2 years	T[Proof] $=20$ years
current 100 mA max	PFDavg $=4.92 \mathrm{E}-05$ Valid for SIL 3	PFDavg $=9.84$ E-05 Valid for SIL 3	PFDavg $=9.84$ E-04 Valid for SIL 2

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

Relay contact	T[Proof] = 10 years
current 100 mA max	PFDavg $=4.92 \mathrm{E}-\mathbf{0 4}$ Valid for SIL $\mathbf{3}$

Systematic capability SIL 3.

Testing procedure at T-proof

The proof test shall be performed to reveal dangerous faults which are undetected by diagnostic. This means that it is necessary to specify how dangerous undetected fault, which have been noted during the FMEDA, can be revealed during proof test.
Note for switch input: to detect a broken wire, or a short circuit condition, in the input connections it is necessary to mount, close to the switches, the end of line resistors:
$\mathrm{R} 1=1 \mathrm{~K} \Omega$ typical (470Ω to $2 \mathrm{~K} \Omega$ range) resistor in series and $\mathrm{R} 2=10 \mathrm{k} \Omega$ typical ($5 \mathrm{~K} \Omega$ to $15 \mathrm{~K} \Omega$ range) resistor in parallel to the contacts.
The Proof test consists of the following steps:

Steps	Action
1	Bypass the safety-related PLC or take other appropriate action to avoid a false trip.
2	Vary the state conditions of the input sensors/contacts coming from field and verify that relay outputs change from de-energized to energized and vice versa, then check that the de-energized state condition corresponds to the required safety-related function.
3	If input line fault detection is enable for each channel by means of Dip-switches specific set up, disconnect the input wiring coming from the field sensor/contact and check that the correspondent relay output is de-energized. Then, put in short condition the input connections and verify that the same output remains de-energized. In both case the proper alarm LEDs, on the front panel, will be came red.
4	Restore the loop to full operation.
5	Remove the bypass from the safety-related PLC or restore normal operation.

This test will reveal approximately 99% of possible Dangerous Undetected failures in the repeater.

Configuration

DIP Switch factory settings (valid for D5032S and D5032D)

SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
OFF							

D5032D (used as double channel) Configuration Summary Table : WARNING: dip-switch 6-7-8 must be set to "OFF" position.

Channel	1		2		Channel	1	2
Line fault detection	SW1	SW5	SW3		IN/OUT Operation	SW2	SW4
Disabled (switch/proximity sensor)	OFF	OFF	OFF		NO-NE or NC-ND	ON	ON
Enabled, for SIL application (proximity sensor or switch with end of line resistors, detects field open circuit and short circuit, de-energizes relay in fault condition)	ON	ON	ON		NO-ND or NC-NE (for SIL application)	OFF	OFF

D5032D (used as duplicator or fault output) Configuration Summary Table

WARNING: Terminals 9-10 must be shorted to set module as Duplicator or Fault Out. Dip-switch 3 must be set to "OFF" position.

Line fault detection	SW1	SW5
Disabled (switch/proximity sensor)	OFF	OFF
Enabled, for SIL application (proximity sensor or switch with end of line resistors, detects field open circuit and short circuit, de-energizes relay in fault condition)	Output 1, (for SIL application) De-energized in Fault condition	ON
Output 1, Not specified Fault condition	OFF	

IN/OUT Operation Output 1	SW2
NO-NE or NC-ND	ON
NO-ND or NC-NE (for SIL application)	OFF

Output 2 Operation	SW6		SW7	SW8	Mode	SW4
Duplicator	De-energized in fault condition (for SIL application) if line fault detection enabled (SW1 ON)	ON	OFF	ON	Parallel (for SIL applica- tion)	Set equal to SW2
	Not specified Fault condition	OFF			Reverse	Set opposite to SW2
					ND	ON
Fault Output	OFF (for SIL applicatio		ON	OFF	$\begin{aligned} & \text { NE } \\ & \text { (for SIL } \\ & \frac{\text { applica- }}{\text { (ion) }} \end{aligned}$	OFF

D5032S Configuration Summary Table : WARNING: Dip-switch 7-8 must be set to "OFF" position.

Line fault detection	SW1	SW5	IN/OUT Operation	SW2	
Disabled (switch/proximity sensor)	OFF	OFF		NO-NE or NC-ND	ON
Enabled, for SIL application (proximity sensor or switch with end of line resistors, detects field open circuit and short circuit, de-energizes relay in fault condition)	ON	ON		NO-ND or NC-NE (for SIL application)	OFF

D5032D used as double channel

A configuration DIP switch is located on component side of pcb. This switch allows the configuration of input/output relationship, fault detection functions and operating mode.
WARNING: dip-switch 6-7-8 must be set to "OFF" position.

Dip switch factory settings. All Switches are OFF

Dip switch configuration

Configuration

D5032D used as duplicator or fault output

A configuration DIP switch is located on component side of pcb. This switch allows the configuration of input/output relationship, fault detection functions and operating mode.
WARNING: Terminals $9-10$ must be shorted to set module as Duplicator or Fault Out.

Dip-switch 3 must be set to "OFF" position.

Dip switch factory settings. All Switches are OFF

Dip switch configuration

Must be set to "OFF" position

Configuration

D5032S

A configuration DIP switch is located on component side of pcb . This switch allows the configuration of input/output relationship, fault detection functions and operating mode.

WARNING: Dip-switch 7-8 must be set to "OFF" position.

